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Atomic ph

"Physicists are made of =toms.

A physicist is an attempt by an atom =
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.deBroglie proposal 1924

The Nobel Prize in Physics 1929 was
awarded to Louis de Broglie "for his
discovery of the wave nature of electrons”.

.Electron diffraction 1930

The Nobel Prize in Physics 1937 was awarded jointly to
Clinton Joseph Davisson and George Paget Thomson
"for their experimental discovery of the diffraction of
electrons by crystals"

«Electron interferometry 1950s

_ Internal structure!!!
«Neutron interferometry 1960s

. /

JAtom interferometers 1990s
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.deBroglie proposal 1924

h The “ruler” for precision measurements

A= —
muv

.Electron diffraction 1930

me = 9.10938188 x 10731 kg
.Electron interferometry 1950s lx 1000

«Neutron interferometry 1960s  m. = 1.6749 x 10~*7kg

[
° lX1OO

JAtom interferometers 1990s Mes = 2.2062 x 1025 kg
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Quantum-noise limits to matter-wave interferometry

Marlan O. Scully
Department of Physies, Texas A&M University, College Station, Texas 77843
and Max-Planck-Institut fiir Quantenoptik, W-8046, Garching, Germany
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TABLE I. Compared and contrasted are different properties of matter-wave and optical gyroscopes
in terms of their sensitivity to phase differences—or equivalently —rotation rates. We see that the high
mass of atoms initially contributes an increase of sensitivity of 10'%, but that the low atomic beam inten-
sity, compared to photon beams, removes some of this advantage, as does cbd number of round

trips possible in an atom interferometer. Nevertheless, a typical factor of{a 10" indrease in rotation sen-
sitivity can still be expected using atoms rather than photons.

Matter-to-light

Matter - Laser sensitivity factor
Mass
factor ~10* MeV ~1 e¥
_ P 10°°
it 14 I e Fm mmm———
Flux pvA~10"= 1010 5 10-1
~ 107
— 10" particles — 10" photons
Se&C sCC
Round
trips ~1 I ~107*
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Outline

* Interaction of two level atom with single mode field

*Schrodinger Eq. Hier klicken Blick ins Buch!

Wolfgang P Schleich

*Density Matrix

Quantum Optics
*Rabi flopping in Phase Space

*Ramsey interference

*Spin echo __ ﬂm
*Two time correlation functions




Hamiltonian

hwr 12
h(JJO )
v 11>

H = hwol2 >< 2| + ngﬁk,s — i - E Fully quantum mechanical
k,s
H=hwl2><2|—4-F Semi-classical

fi = pi2|l >< 2| 4 pip|2 >< 1
E = Ee WLt 4 ¢c.

u-E = 1 >< 2| 4 plrEe™™rt2 >< 1|
1 |
— t >< 2| + Eth_“”LﬂQ >< 1
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_ 2u12&
() = 2128
* As we'll see, this is the rate the atom oscillates
between ground and excited states
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The Schrodinger Equation

.. 0
P(t) > = c1(t)|]1 > +ea(t)]2 >

H|b(t) >= [hwo|2>(2| _ %m*ewtu)(m _ %me—wwz)a}
X le1()[1) + c2(1)[2)]

' . 1 .
= hwoca(t)2 > —%hﬂ*ethCQ(tﬂl > —ShQe e (D)1 >

ih%hﬁ(t) > = ihe (O[> Filiea(1)]2 >
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Some more algebra

i (D)1 > +ihea ()2 > = hwoea(t)]2 > —%m*ew@(tm >

1 :
- Ehﬂe_“"”cl (t)]2 >

Gt = %Q*ei“”@(t)

(.12 (t) = —lWpC2 (t) -+ %Qe‘iw”cl (t)

In principle, numerically integrable

10
July 25, 2013



Change to rotating frame

Some change into frame rotating at a rate w,

We will change into frame rotating at a rate wy,

C1 (t) — 61 (t)

C9o (t) — 52 (t) e_"“"Lt
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Final set of equations

—N—
N, .
Qe O
[N
N TN
~
S’ SN’
Il

— 200¢1 (1)
5 — wr — Laser detuning from
- L ¢ atomic resonance

{ c1(t) = 02:(t) + 50%E(t)

P(t) = Li(t)

0 4O
where L = 2 _ (a(?)
(ﬂ i0 ) vit) = (62@))
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the equations

Solving this system by eigenvalue method

‘(—A —I—%Q*)‘ QO = /02 + §2
Generalized Rabi
N ENE DR 6 G/ Doz reauency
N 2 N 2

M (Q*/(fi’ + 5))
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General solution

b(t) = Ae* "y + Be T

(2%3) _ i +0)t/2 (m/ (?’ T 5)) | Be—il'=58)t/2 (—Q*/ (19' - 5)>

B = (92’ )62(0) sarc1(0)

A= 92{{502(0) + %61(0)
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Most general form

c1(t) 2 c1(0) + & co(0) | e +0)t/2
20/ (Y + 6) 20 °
) o ()2
i [29/(9' —5y1(0) = 5ee0) ] e
62(t) = [2Q’ C1 (0) + 20)/ 02(0):| e! (¥ +0)i/2

2 V-9 —i(V'8)t/2
- [mcl(o) oy 02(0)] e o
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Compact notation

 Amplitudes as if the atom was Iinitially in the
ground or excited state

Amplitude of ground state as if atom started in the ground state
_ |Q|2 ez(ﬂ’+5)t/2 4 |Q|2 e—z(Q’—a)t/z
20/ (Y + 6) 20/ (Y — §) !

B = Le@ronr o L u@-sue

2QY A
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Compact notation

 Amplitudes as if the atom was Iinitially in the
ground or excited state

2 2
cl(t) = £ et (' +0)t/2 2 o~ U2 —0)t/2

20 (Y + 0) 20 (Y — 5) ’

(s P R LA Y
20V 28V ’

\ Amplitude of excited state as if atom started in the ground state
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Compact notation A
 Amplitudes as if the atom was Iinitially in the
ground or excited state

cl(t) = 2 et (' +0)t/2 (i o~ U2 —0)t/2
: 20/( +0) 200(Y — 0) ’
. Qo Qo

c(t) = Tk (Q'+8)t/2 _ ey ('=0)t/2

* Similarly

e QO o Q* o

&s(t) = S € Q' +o)t/2 _ — (@'+8)t/2,

e W+, Q=6

cs(t) = 0 (Q'+8)t/2 4 o o U/ +6)t/2
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Finally....

« Basically, we now have the probability
amplitudes to find the atom in the excited or
ground states as a function of time
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\What does this look like?

July 25, 2013
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Simple solution
* For atom initially in the ground state

8 @z S —ay2

)
N Q
—
N
~—
I

2V 2Q)
= g sin (V't/2)e*/?
* Therefore
0O |2
B0 P = || si@/2)
Oscillates at exactly

1|9

= 5 @ (1 — CO

21
July 25, 2013



* As constructed, there is no “steady state”
— System continues to oscillate forever

We have ignored spontaneous emission!
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Inclusion of spontaneous emission
* Putin “by hand”
— We'll take the excited state decay rate to be 25
— We'll take the coherence decay rate to be (3

e Really requires a density matrix approach which
we will not cover in this lecture.

But here we’ll skip to the end...

23
July 25, 2013



* No "nice” analytic solution exists

* Analytic solutions exist if...
— Spontaneous emission is ignored (as shown before)
— Detuning is taken to be zero

0.8

0.7r

0.6

505+

—

o
504—

g
203t

oy

0.2r

Bk

Strongly driven

Weakly driven -

%
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Steady State

=

ea(t)]”

_|_

Re-arranging

102
iy

NGRS

ea(t)*

— —as ) = 0

Powerbroadened Linewidth

/

/6effective — /8\/1

Natural Linewidth

Lo
2 0
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Justification for ignoring
spontaneous emission
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Three level system

1)
H = RA|2)(2] + iwns[3)(3] — - B

p-E = piEe™ 1) (3] + passe|2)(3]
HpizEre ™ 3) (1] + p5E2e™"2"[3) (2]
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System of equations
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Adiabatically eliminate the 3 |evel

Take é3(t) = 0 and solve for és(t)

Ly (t) — 552 82(t)

on|b

é3(t) = —5%

Substitute back into equations for ¢;(t) and co(?)

2
DLz (1) — 12 6(t)

() = —

Ea(t) =1 (5 — 61) Ea(t) — ﬁﬂg—?zél(t) S 0.

2

N

These are close to the final solution,

Let’s do one more transformation to drive the point home

29
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One more transformation

Functionally, the same form!

30
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One more transformation

2
~ [€2]

di(t) = & (t)et o dy(t) = Ga(t)et o !

Adiabatically eliminated three level equations

00 :
=—= 5~ — Raman Rabi frequency
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One more transformation

2
~ [€2]

di(t) = & (t)et o dy(t) = Ga(t)et o !

Adiabatically eliminated three level equations

gy (t) = i g, da (1

Original two level equations

c1(t) = £Q7E(t) co(t)

Two photon detuning 6, — d; plays the role of detuning

32
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One more transformation

2
Q
5|t
1

2
~ [€2]

di(t) = ¢ (t)ed da(t) = E(t)e

N

Adiabatically eliminated three level equations

b %
[,
[T

', L0
27475

dr(t) = 1224, da(t) = o | (61 — 62) - (SpL — 150

Original two level equations

¢1(t) = 207G () Ca(t) = 1065(t) +

AC Stark shift
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QRaman

1) 1) d

Now states |1) and |2) are ground states!
This justifies ignoring spontaneous emission

34
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Definition of «t pulse

-
Qo

-
(@)

-
Ny

Fluorescence (a.11.)

{2~
0 | | | | | | | A 2
0 20 40 60 80 100 120 140 160 180
Time (psec)
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Definition of /2 pulse

-
Qo

-
(@)

-
Ny

Fluorescence (a.11.)

0.2
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|
100
Time (psec)
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nulse experiments

« Consider an atom initially in the ground state

4(0)) = 1)

* Apply a pulse that is "nominally” a n/2 pulse

— Denote that time
V(> Try2)) =] (Tr)2)

1

Oy T7T/2

1) + &5 (T /2)12)

= — (1) 4+ |2
\/5(| ) + [2)) (for perfect /2 pulses)

Pyt > Ty o) = |215(1)]* = |&(Tys0)|”

July 25, 2013
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1

09+

08+

0.7+

06+

04k

0.4+

03F

02F

01k

1]
-0.02
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Double pulse sequence-“Ramse

* As before, bi he ground state
« Again, apply th T /o
[t > Tr "e2)12)

 Now, allow al
(taking |1)

W(t > T7T/2

39
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* Now apply second pulse (assumed identical to the

first one)
9( ﬁ/2+T1+TW/2)> =
(T j2) & (Trya) + T8 (T p2) &(Tp2) ] 1)

T [Cgl)(TW/Q) (

40
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Simplification

* By physics
5 (Try2) = (&1(Tr)2) )

e — (o) 1+ e

Same function as before
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Simplification

* By physics
5 (Try2) = (&1(Tr)2) )

Py(t) = |é5(Tys2) \2 (T /2) | 1+ez¢e@5@

Interference!!!

42
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Recall

Assume atom initially in the ground state (0) = |1)

After w/2 pulse: |¢(t) = % (11) + [2)) A “beam splitter”

After a 7 pulse: |1) — [2)
A “mirror”

2) = [1)

44
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Overview of Al Sensors
o pb k(27 + TIZ = [ — cos (Ag — b7/2)

Z

45
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...and just for fun

Make T1 as long as possible
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Even more fun....

1 1 kH Iz
13 a2 11 10 9 __5‘ r 5 5
Two-photon detuning (kHz)
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Resonance width Av ~ 10° Hz

Optical frequencies v ~ 10 Hz
Precision of % ~ 10712

Good enouah for government
‘work!

| -100 -80 -B0 -40 =20 a 20 a0 B0 an
July 25, 2013 Two-photon detunine (kHz)



Questions?
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